题目内容
【题目】有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:
优秀 | 非优秀 | 总计 | |
甲班 | 10 |
| |
乙班 |
| 30 | |
总计 |
|
已知在全部105人中随机抽取1人,成绩优秀的概率为
,则下列说法正确的是( )
A. 列联表中
的值为30,
的值为35
B. 列联表中
的值为15,
的值为50
C. 根据列联表中的数据,若按
的可靠性要求,能认为“成绩与班级有关系”
D. 根据列联表中的数据,若按
的可靠性要求,不能认为“成绩与班级有关系”
【答案】C
【解析】
根据成绩优秀的概率求出成绩优秀的学生数,从而求得
和
的值,再根据公式求得
的值,与临界值比较大小,可判断“成绩与班级有关系”的可靠性程度.
成绩优秀的概率为
成绩优秀的学生数是
,
成绩非优秀的学生数是
,选项
错误,
根据列联表中数据,得到
,
因此有
的把握认为“成绩与班级有关系”,故选C.
【题目】一个化肥厂生产甲种混合肥料1车皮、乙种混合肥料1车皮所需要的主要原料如表:
原料 | 磷酸盐(单位:吨) | 硝酸盐(单位:吨) |
甲 | 4 | 20 |
乙 | 2 | 20 |
现库存磷酸盐8吨、硝酸盐60吨,计划在此基础上生产若干车皮的甲、乙两种混合肥料.
(1)设x,y分别表示计划生产甲、乙两种肥料的车皮数,试列出x,y满足的数学关系式,并画出相应的平面区域;
(2)若生产1车皮甲种肥料,利润为3万元;生产1车皮乙种肥料,利润为2万元.那么分别生产甲、乙两种肥料多少车皮,能够产生最大利润?最大利润是多少?
【题目】某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的
列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为
.
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.
参考公式及数据:
,
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|