ÌâÄ¿ÄÚÈÝ

3£®ÔÚÖ±½Ç×ø±êϵxOy ÖУ¬ÒÑÖªÔ²CµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=1+cosϕ}\\{y=sinϕ}\end{array}}\right.$£¨¦ÕΪ²ÎÊý£©£®ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®
£¨1£©ÇóÔ²µÄ¼«×ø±ê·½³Ì£»
£¨2£©Ö±ÏßlµÄ¼«×ø·½³ÌÊÇ$2¦Ñsin£¨¦È+\frac{¦Ð}{3}£©=3\sqrt{3}$£¬ÉäÏßOM£º¦È=$\frac{¦Ð}{3}$ÓëÔ²µÄ½»µãΪO£¬P£¬ÓëÖ±ÏßlµÄ½»µãΪQ£¬ÇóÏß¶ÎPQµÄ³¤£®

·ÖÎö £¨1£©Ô²CµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊýÄÜÇó³öÔ²µÄ¼«×ø±ê·½³Ì£¬°Ñx=¦Ñcos¦È£¬y=¦Ñsin¦È´úÈ뻯¼òÄÜÇó³ö´ËÔ²µÄ¼«×ø±ê·½³Ì£®
£¨II£©Çó³öÖ±Ïßl£ºy+$\sqrt{3}$x=3$\sqrt{3}$£¬ÉäÏßOM£ºy=$\sqrt{3}$x£®ÁªÁ¢$\left\{\begin{array}{l}{y+\sqrt{3}x=3\sqrt{3}}\\{y=\sqrt{3}x}\end{array}\right.$£¬µÃQ£¨$\frac{3}{2}£¬\frac{3\sqrt{3}}{2}$£©£¬ÁªÁ¢$\left\{\begin{array}{l}{y=\sqrt{3}x}\\{£¨x-1£©^{2}+{y}^{2}=1}\end{array}\right.$£¬µÃP£¨$\frac{1}{2}$£¬$\frac{\sqrt{3}}{2}$£©£¬ÓÉ´ËÄÜÇó³öÏß¶ÎPQµÄ³¤£®

½â´ð ½â£º£¨1£©Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=1+cosϕ}\\{y=sinϕ}\end{array}}\right.$£¨¦ÕΪ²ÎÊý£©£®
ÏûÈ¥²ÎÊý¿ÉµÃ£º£¨x-1£©2+y2=1£®
°Ñx=¦Ñcos¦È£¬y=¦Ñsin¦È´úÈ뻯¼òµÃ´ËÔ²µÄ¼«×ø±ê·½³ÌΪ£º¦Ñ=2cos¦È£®
£¨II£©ÈçͼËùʾ£¬Ö±ÏßlµÄ¼«×ø·½³ÌÊÇ$2¦Ñsin£¨¦È+\frac{¦Ð}{3}£©=3\sqrt{3}$£¬
ÉäÏßOM£º¦È=$\frac{¦Ð}{3}$£®
¿ÉµÃÆÕͨ·½³Ì£ºÖ±Ïßl£ºy+$\sqrt{3}$x=3$\sqrt{3}$£¬ÉäÏßOM£ºy=$\sqrt{3}$x£®
ÁªÁ¢$\left\{\begin{array}{l}{y+\sqrt{3}x=3\sqrt{3}}\\{y=\sqrt{3}x}\end{array}\right.$£¬½âµÃx=$\frac{3}{2}$£¬y=$\frac{3\sqrt{3}}{2}$£¬¼´Q£¨$\frac{3}{2}£¬\frac{3\sqrt{3}}{2}$£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=\sqrt{3}x}\\{£¨x-1£©^{2}+{y}^{2}=1}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=\frac{\sqrt{3}}{2}}\end{array}\right.$£®
¡àP£¨$\frac{1}{2}$£¬$\frac{\sqrt{3}}{2}$£©£®
¡à|PQ|=$\sqrt{£¨\frac{3}{2}-\frac{1}{2}£©^{2}+£¨\frac{3\sqrt{3}}{2}-\frac{\sqrt{3}}{2}£©^{2}}$=2£®
¡àÏß¶ÎPQµÄ³¤Îª2£®

µãÆÀ ±¾Ì⿼²éÔ²µÄ¼«×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÏ߶㤵ÄÇ󷨣¬¿¼²é¼«×ø±ê·½³Ì¡¢²ÎÊý·½³Ì¡¢Ö±½Ç×ø±ê·½³ÌµÄ»¥»¯¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢Èý½Çº¯ÊýÐÔÖʵȻù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø