题目内容
设向量
=(sinx,cosx),
=(cosx,cosx),x∈R,函数f(x)=
•(
-
)
(1)求函数f(x)的最小正周期;
(2)当x∈[-
,
]时,求函数f(x)的值域;
(3)求使不等式f(x)≥1成立的x的取值范围.
| a |
| b |
| a |
| a |
| b |
(1)求函数f(x)的最小正周期;
(2)当x∈[-
| π |
| 4 |
| π |
| 4 |
(3)求使不等式f(x)≥1成立的x的取值范围.
(1)∵
-
=(sinx-cosx,0),
∴
•(
-
=(sinx,cosx)•(sinx-cosx,0)
=sin2x-sinxcosx=
-
sin2x=
-
sin(2x+
),所以周期 T=
=π.
(2)当x∈[-
,
]时,-
≤2x+
≤
,-
≤-
sin(2x+
)≤
,
所以
≤
-
sin(2x+
)≤1,即
≤f(x)≤1.
(3)f(x)≥1,即
-
sin(2x+
)≥1,所以sin(2x+
)≤-
,
+2kπ≤2x+
≤
+2kπ,k∈Z,所以
+kπ≤x≤
+kπ,k∈Z,
所以x∈{x|
+kπ≤x≤
+kπ,k∈Z}.
| a |
| b |
∴
| a |
| a |
| b |
=sin2x-sinxcosx=
| 1-cos2x |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 4 |
| 2π |
| 2 |
(2)当x∈[-
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| 3π |
| 4 |
| ||
| 2 |
| ||
| 2 |
| π |
| 4 |
| 1 |
| 2 |
所以
1-
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 4 |
1-
| ||
| 2 |
(3)f(x)≥1,即
| 1 |
| 2 |
| ||
| 2 |
| π |
| 4 |
| π |
| 4 |
| ||
| 2 |
| 5π |
| 4 |
| π |
| 4 |
| 7π |
| 4 |
| π |
| 2 |
| 3π |
| 4 |
所以x∈{x|
| π |
| 2 |
| 3π |
| 4 |
练习册系列答案
相关题目
设向量
=(sinx,
),
=(
,2cosx)且
∥
,则锐角x为( )
| a |
| 3 |
| 2 |
| b |
| 2 |
| 3 |
| a |
| b |
A、
| ||
B、
| ||
C、
| ||
D、
|