题目内容
已知向量| OA |
| OB |
| OC |
| OA |
| OB |
| OC |
| 0 |
| OA |
| OB |
| OC |
| AB |
| AP |
| BC |
| BP |
| CA |
| CP |
分析:由
+
+
=
,且|
|=|
|=|
|=2,我们易分析出向量
,
,
两两夹角均为120°,进而我们可以求出|
|2,|
|2,|
|2,及
•
,
•
,
•
的值,将
•
+
•
+
•
=利用向量加减法的三角形法则分解展开后,易得到结果.
| OA |
| OB |
| OC |
| 0 |
| OA |
| OB |
| OC |
| OA |
| OB |
| OC |
| OA |
| OB |
| OC |
| OA |
| OB |
| OB |
| OC |
| OA |
| OC |
| AB |
| AP |
| BC |
| BP |
| CA |
| CP |
解答:解:∵
+
+
=
,且|
|=|
|=|
|=2,
∴向量
,
,
两两夹角均为120°
∴|
|2=|
|2=|
|2=4,
•
=
•
=
•
=-2
∴
•
+
•
+
•
=(
-
)•(
-
)+(
-
)•(
-
)+(
-
)•(
-
)
=(|
|2+|
|2+|
|2)-(
•
+
•
+
•
)
=12+6=18
故答案:18
| OA |
| OB |
| OC |
| 0 |
| OA |
| OB |
| OC |
∴向量
| OA |
| OB |
| OC |
∴|
| OA |
| OB |
| OC |
| OA |
| OB |
| OB |
| OC |
| OA |
| OC |
∴
| AB |
| AP |
| BC |
| BP |
| CA |
| CP |
=(
| OB |
| OA |
| OP |
| OA |
| OC |
| OB |
| OP |
| OB |
| OA |
| OC |
| OP |
| OC |
=(|
| OA |
| OB |
| OC |
| OA |
| OB |
| OB |
| OC |
| OA |
| OC |
=12+6=18
故答案:18
点评:本题考查的知识点是平面向量的数量积的运算,根据已知中
+
+
=
,且|
|=|
|=|
|=2,决断出向量
,
,
两两夹角均为120°是解答本题的关键.
| OA |
| OB |
| OC |
| 0 |
| OA |
| OB |
| OC |
| OA |
| OB |
| OC |
练习册系列答案
相关题目