题目内容

已知向量
OA
OB
OC
满足条件:
OA
+
OB
+
OC
=
0
,且|
OA
|=|
OB
|=|
OC
|
=2,点P是△ABC内一动点,则
AB
AP
+
BC
BP
+
CA
CP
=
 
分析:
OA
+
OB
+
OC
=
0
,且|
OA
|=|
OB
|=|
OC
|
=2,我们易分析出向量
OA
OB
OC
两两夹角均为120°,进而我们可以求出|
OA
|2,|
OB
|2,|
OC
|2
,及
OA
OB
OB
OC
OA
OC
的值,将
AB
AP
+
BC
BP
+
CA
CP
=利用向量加减法的三角形法则分解展开后,易得到结果.
解答:解:∵
OA
+
OB
+
OC
=
0
,且|
OA
|=|
OB
|=|
OC
|
=2,
∴向量
OA
OB
OC
两两夹角均为120°
|
OA
|2=|
OB
|2=|
OC
|2
=4,
OA
OB
=
OB
OC
=
OA
OC
=-2

AB
AP
+
BC
BP
+
CA
CP

=(
OB
-
OA
)•(
OP
-
OA
)
+(
OC
-
OB
)•(
OP
-
OB
)
+(
OA
-
OC
)•(
OP
-
OC
)

=(|
OA
|2+|
OB
|2+|
OC
|2
)-(
OA
OB
+
OB
OC
+
OA
OC
)

=12+6=18
故答案:18
点评:本题考查的知识点是平面向量的数量积的运算,根据已知中
OA
+
OB
+
OC
=
0
,且|
OA
|=|
OB
|=|
OC
|
=2,决断出向量
OA
OB
OC
两两夹角均为120°是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网