题目内容
若a,b∈R+,a≠b,P=ak+1+bk+1,Q=abk+akb,(k∈N*),则( )A.P<Q B.P>Q C.P=Q D.不能确定
B
解析:∵P-Q=(ak-bk)(a-b),
∴当a>b时,ak>bk,P-Q>0;
当a<b时,ak<bk,P-Q>0,
即总有P>Q.
练习册系列答案
相关题目
下列命题中正确的是( )
| A、若a,b,c∈R,且a>b,则ac2>bc2 | ||||
B、若a,b∈R且a•b≠0则
| ||||
| C、若a,b∈R且a>|b|,则an>bn(n∈N+) | ||||
D、若a>b,c>d,则
|