题目内容
用数学归纳法证明:1·n+2(n-1)+3(n-2)+…+(n-1)·2+n·1=
n(n+1)(n+2).
证明:(1)当n=1时,左边=1,右边=
(1+1)(1+2)=1,等式成立.
(2)假设n=k时,1·k+2(k-1)+3(k-2)+…+(k-1)·2+k·1=
k(k+1)(k+2)成立.
当n=k+1时,
1·(k+1)+2k+3(k-1)+…+k·2+(k+1)·1
=(1·k+1)+[2(k-1)+2]+[3(k-2)+3]+…+(k·1+k)+(k+1)
=[1·k+2(k-1)+3(k-2)+…+k·1]+[1+2+3+…+(k+1)]
=
k(k+1)(k+2)+
(k+1)(k+2)
=
(k+1)[(k+1)+1][(k+1)+2].
∴对n=k+1时,等式成立.
由(1)(2)可知对一切自然数n∈N*,等式成立.
练习册系列答案
相关题目