题目内容
(2009•长宁区二模)定义:项数为偶数的数列,若奇数项成等差数列,偶数项成等比数列,则称该数列为“对偶数列”.
(1)若项数为20项的“对偶数列”{an},前4项为1,1,3,
,求该数列的通项公式及20项的和;
(2)设项数为2m(m∈N*)的“对偶数列”{an}前4项为1,1,3,
,试求该数列前n(1≤n≤2m,n∈N*)项的和Sn;
(3)求证:等差数列{an}(an≠0)为“对偶数列”当且仅当数列{an}为非零常数数列.
(1)若项数为20项的“对偶数列”{an},前4项为1,1,3,
| 1 |
| 2 |
(2)设项数为2m(m∈N*)的“对偶数列”{an}前4项为1,1,3,
| 1 |
| 2 |
(3)求证:等差数列{an}(an≠0)为“对偶数列”当且仅当数列{an}为非零常数数列.
分析:(1)由条件得,a1,a3,…,a19成等差数列,公差为2,a1=1;a2,a4,…,a20成等比数列,公比为
,a2=1,由此能求出该数列的通项公式及20项的和;
(2)1≤n≤2m,n∈N*,当n为偶数时,Sn=
+
=
+2-2(
)
.当n为奇数时,Sn=
+
=
(n+1)2+2-2(
)
.
(3)设{an}为等差数列,公差为d.若{an}为“对偶数列”,则a2,a4,a6,…成等比数列,由此{an}为非零常数列.若{an}为非零常数列,则a1=a2=a3=a4=…,满足“对偶数列”的条件,因此{an}为“对偶数列”.
| 1 |
| 2 |
(2)1≤n≤2m,n∈N*,当n为偶数时,Sn=
| ||
| 2 |
1-(
| ||||
1-
|
| n2 |
| 4 |
| 1 |
| 2 |
| n |
| 2 |
| ||
| 2 |
1-(
| ||||
1-
|
| 1 |
| 4 |
| 1 |
| 2 |
| n-1 |
| 2 |
(3)设{an}为等差数列,公差为d.若{an}为“对偶数列”,则a2,a4,a6,…成等比数列,由此{an}为非零常数列.若{an}为非零常数列,则a1=a2=a3=a4=…,满足“对偶数列”的条件,因此{an}为“对偶数列”.
解答:解:(1)由条件得,a1,a3,…,a19成等差数列,公差为2,a1=1;a2,a4,…,a20成等比数列,公比为
,a2=1.∴an=
即an=
(n∈N*且n≤20)
(2)1≤n≤2m,n∈N*,
当n为偶数时,Sn=
+
=
+2-2(
)
.
当n为奇数时,Sn=
+
=
(n+1)2+2-2(
)
.
(3)设{an}为等差数列,公差为d.
若{an}为“对偶数列”,则a2,a4,a6,…成等比数列,∴a42=a2a6,(a1+3d)2=(a1+d)(a1+5d),得出d=0,
所以{an}为非零常数列.
若{an}为非零常数列,则a1=a2=a3=a4=…,满足“对偶数列”的条件,因此{an}为“对偶数列”.
| 1 |
| 2 |
|
即an=
|
|
(2)1≤n≤2m,n∈N*,
当n为偶数时,Sn=
| ||
| 2 |
1-(
| ||||
1-
|
| n2 |
| 4 |
| 1 |
| 2 |
| n |
| 2 |
当n为奇数时,Sn=
| ||
| 2 |
1-(
| ||||
1-
|
| 1 |
| 4 |
| 1 |
| 2 |
| n-1 |
| 2 |
(3)设{an}为等差数列,公差为d.
若{an}为“对偶数列”,则a2,a4,a6,…成等比数列,∴a42=a2a6,(a1+3d)2=(a1+d)(a1+5d),得出d=0,
所以{an}为非零常数列.
若{an}为非零常数列,则a1=a2=a3=a4=…,满足“对偶数列”的条件,因此{an}为“对偶数列”.
点评:本题考查数列与函数的综合,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关题目