题目内容
已知函数f(x)满足2f(x)+f(| 1 |
| x |
| 3 |
| x |
| f(an) |
| 2f(an)+3 |
| 1 |
| an |
(1)求函数f(x)的解析式;
(2)求{an}、{bn}的通项公式;
(3)若对任意实数λ∈[0,1],总存在自然数k,当n≥k时,bn≥
| 1-λ |
| 3 |
| 1 |
| an |
分析:(1)由2f(x)+f(
)=6(x)+
知,让
与x互换可得2f(
)+f(x)=
+3x,联立解求解.
(2)由an+1=
=
,可变形为
=
+2,∴|
|是以1为首项、2为公差的等差数列求解.又bn+1-bn=2n-1再用累加法求解.
(3)对任意实数λ∈[0,1]时,bn≥
f(
)恒成立,转化为n2-2n+2≥
×3(2n-1)恒成立、变形为(2n-1)λ+n2-2n+3≥0,λ∈[0,1]恒成立.再求g(λ)=(2n-1)λ+n2-4n+3的最小值即可.
| 1 |
| x |
| 3 |
| x |
| 1 |
| x |
| 1 |
| x |
| 6 |
| x |
(2)由an+1=
| f(an) |
| 2f(an)+3 |
| an |
| 2an+1 |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
(3)对任意实数λ∈[0,1]时,bn≥
| 1-λ |
| 3 |
| 1 | ||
|
| 1-λ |
| 3 |
解答:解:(1)由2f(x)+f(
)=6(x)+
知,让
与x互换可得2f(
)+f(x)=
+3x,联立解得:f(x)=3x.
(2)由an+1=
=
,可变形为
=
+2,
∴|
|是以1为首项、2为公差的等差数列.
又bn+1-bn=2n-1,
∴bn-bn-1=2(n-1)-1,b3-b2=2×2-1,b2-b1=2-1,
相加有bn+1-b1=n2
∴bn=(n-1)2+1=n2-2n+2.
(3)对任意实数λ∈[0,1]时,bn≥
f(
)
恒成立,则n2-2n+2≥
×3(2n-1)恒成立、变形为(2n-1)λ+n2-2n+3≥0,λ∈[0,1]恒成立.
设g(λ)=(2n-1)λ+n2-4n+3,
∴n>3或n≤1.n∈N+.
| 1 |
| x |
| 3 |
| x |
| 1 |
| x |
| 1 |
| x |
| 6 |
| x |
(2)由an+1=
| f(an) |
| 2f(an)+3 |
| an |
| 2an+1 |
| 1 |
| an+1 |
| 1 |
| an |
∴|
| 1 |
| an |
又bn+1-bn=2n-1,
∴bn-bn-1=2(n-1)-1,b3-b2=2×2-1,b2-b1=2-1,
相加有bn+1-b1=n2
∴bn=(n-1)2+1=n2-2n+2.
(3)对任意实数λ∈[0,1]时,bn≥
| 1-λ |
| 3 |
| 1 | ||
|
恒成立,则n2-2n+2≥
| 1-λ |
| 3 |
设g(λ)=(2n-1)λ+n2-4n+3,
|
∴n>3或n≤1.n∈N+.
点评:本题主要考查用构造法和累加法求数列通项公式以及变形研究不等式恒成立问题.
练习册系列答案
相关题目