题目内容

在△ABC中,B=60°,b2=ac,则△ABC一定是


  1. A.
    锐角三角形
  2. B.
    等边三角形
  3. C.
    等腰三角形
  4. D.
    钝角三角形
B
分析:利用余弦定理可得 b2=a2+c2-2accosB=a2+c2-ac,又 b2=ac,可得 (a-c)2=0,从而得到
△ABC一定是等边三角形.
题干错误:b=ac,应是:b2=ac,纠错的题.
解答:∵b2=ac,B=60°,由余弦定理可得 b2=a2+c2-2accosB=a2+c2-ac,
∴ac=a2+c2-ac,∴(a-c)2=0,故 a=c,故△ABC一定是等边三角形,
故选 B.
点评:本题考查余弦定理的应用,得到 (a-c)2=0,是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网