ÌâÄ¿ÄÚÈÝ
ij¹«Ë¾È«ÄêµÄÀûÈóΪbÔª£¬ÆäÖÐÒ»²¿·Ö×÷Ϊ½±½ð·¢¸ønλְ¹¤£¬½±½ð·ÖÅä·½°¸ÈçÏÂ:Ê×ÏȽ«Ö°¹¤°´¹¤×÷Òµ¼¨(¹¤×÷Òµ¼¨¾ù²»Ïàͬ)´Ó´óµ½Ð¡£¬ÓÉ1µ½nÅÅÐò£¬µÚ1λְ¹¤µÃ½±½ð
Ôª£¬È»ºóÔÙ½«Óà¶î³ýÒÔn·¢¸øµÚ2λְ¹¤£¬°´´Ë·½·¨½«½±½ðÖðÒ»·¢¸øÃ¿Î»Ö°¹¤£¬²¢½«×îºóÊ£Óಿ·Ö×÷Ϊ¹«Ë¾·¢Õ¹»ù½ð.
(1)Éèak(1¡Ük¡Ün)ΪµÚkλְ¹¤ËùµÃ½±½ð½ð¶î£¬ÊÔÇóa2,a3£¬²¢ÓÃk¡¢nºÍb±íʾak(²»±ØÖ¤Ã÷)£»
(2)Ö¤Ã÷ak£¾ak+1(k=1,2,¡,n£1),²¢½âÊʹ˲»µÈʽ¹ØÓÚ·ÖÅäÔÔòµÄʵ¼ÊÒâÒ壻
(3)·¢Õ¹»ù½ðÓënºÍbÓйأ¬¼ÇΪPn(b),¶Ô³£Êýb£¬µ±n±ä»¯Ê±£¬Çó
Pn(b).
(1)Éèak(1¡Ük¡Ün)ΪµÚkλְ¹¤ËùµÃ½±½ð½ð¶î£¬ÊÔÇóa2,a3£¬²¢ÓÃk¡¢nºÍb±íʾak(²»±ØÖ¤Ã÷)£»
(2)Ö¤Ã÷ak£¾ak+1(k=1,2,¡,n£1),²¢½âÊʹ˲»µÈʽ¹ØÓÚ·ÖÅäÔÔòµÄʵ¼ÊÒâÒ壻
(3)·¢Õ¹»ù½ðÓënºÍbÓйأ¬¼ÇΪPn(b),¶Ô³£Êýb£¬µ±n±ä»¯Ê±£¬Çó
(1) ak=
(1£
)k£1b; (2) ½±½ð·ÖÅä·½°¸ÌåÏÖÁË¡°°´ÀÍ·ÖÅ䡱»ò¡°²»³Ô´ó¹ø·¹¡±µÄÔÔò£»(3)
.
(1)µÚ1λְ¹¤µÄ½±½ða1=
£¬
µÚ2λְ¹¤µÄ½±½ða2=
(1£
)b£¬
µÚ3λְ¹¤µÄ½±½ða3=
(1£
)2b£¬¡£¬
µÚkλְ¹¤µÄ½±½ðak=
(1£
)k£1b;
(2)ak£ak+1=
(1£
)k£1b£¾0£¬´Ë½±½ð·ÖÅä·½°¸ÌåÏÖÁË¡°°´ÀÍ·ÖÅ䡱»ò¡°²»³Ô´ó¹ø·¹¡±µÄÔÔò¡£
(3)Éèfk(b)±íʾ½±½ð·¢¸øµÚkλְ¹¤ºóËùÊ£ÓàÊý£¬
Ôòf1(b)=(1£
)b,f2(b)=(1£
)2b,¡,fk(b)=(1£
)kb.
µÃPn(b)=fn(b)=(1£
)nb,
¹Ê
.
µÚ2λְ¹¤µÄ½±½ða2=
µÚ3λְ¹¤µÄ½±½ða3=
µÚkλְ¹¤µÄ½±½ðak=
(2)ak£ak+1=
(3)Éèfk(b)±íʾ½±½ð·¢¸øµÚkλְ¹¤ºóËùÊ£ÓàÊý£¬
Ôòf1(b)=(1£
µÃPn(b)=fn(b)=(1£
¹Ê
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿