题目内容
将两个顶点在抛物线y2=2px(p>0)上,另一个顶点是此抛物线焦点的正三角形个数记为n,则( )
A.n=0 B.n=1
C.n=2 D.n≥3
C
集合A=,集合B={a2,a+b,0},若A=B,求a2 013+b2 014的值.
下列四个结论正确的是________.(填序号)
① “x≠0”是“x+|x|>0”的必要不充分条件;
② 已知a、b∈R,则“|a+b|=|a|+|b|”的充要条件是ab>0;
③ “a>0,且Δ=b2-4ac≤0”是“一元二次不等式ax2+bx+c≥0的解集是R”的充要条件;
④ “x≠1”是“x2≠1”的充分不必要条件.
连续投掷两次骰子得到的点数分别为m,n,向量a=(m,n)与向量b=(1,0)的夹角记为α,则α∈的概率为( )
A. B.
C. D.
有编号为1,2,3的三个白球,编号为4,5,6的三个黑球,这六个球除编号和颜色外完全相同,现从中任意取出两个球.
(1)求取得的两个球颜色相同的概率;
(2)求取得的两个球颜色不相同的概率.
如图,F1、F2分别是椭圆C:=1(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.
(1)求椭圆C的离心率;
(2)已知△AF1B的面积为40,求a,b的值.
设关于x,y的不等式组表示的平面区域内存在点P(x0,y0),满足x0-2y0=2.求得m的取值范围是( )
已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则( )
A.α∥β且l∥α
B.α⊥β且l⊥β
C.α与β相交,且交线垂直于l
D.α与β相交,且交线平行于l
已知函数.
(Ⅰ)求的值;
(Ⅱ)当时,求函数的最大值和最小值.