题目内容
| 1 |
| 3 |
| OA |
| a |
| OB |
| b |
| a |
| b |
| OC |
| DC |
| DE |
分析:由
=
(
+
)求出
;根据
=
-
求得结果;由于D、E、C三点共线,可得
=λ•
=2λ
+
λ
,再由
=
+
=-
+μ
,故有2λ
+
λ
=-
+μ
,解出λ和μ的值,即可求得
.
| OA |
| 1 |
| 2 |
| OB |
| OC |
| OC |
| DC |
| OC |
| OD |
| DE |
| DC |
| a |
| 5 |
| 3 |
| b |
| DE |
| DO |
| OE |
| 2 |
| 3 |
| b |
| a |
| a |
| 5 |
| 3 |
| b |
| 2 |
| 3 |
| b |
| a |
| DE |
解答:解:因为A是BC的中点,所以
=
(
+
),∴
=2
-
=2
-
. 
∴
=
-
=2
-
-
=2
-
.
由于D、E、C三点共线,
∴
=λ•
=λ(2
-
)=2λ
+
λ
.
由于
=
+
=-
+μ
=-
+μ
.
∴2λ
+
λ
=-
+μ
,故有 2λ=μ,
λ=-
.
解得 λ=
,μ=
.
∴
=
-
.
| OA |
| 1 |
| 2 |
| OB |
| OC |
| OC |
| OA |
| OB |
| a |
| b |
∴
| DC |
| OC |
| OD |
| a |
| b |
| 2 |
| 3 |
| b |
| a |
| 5 |
| 3 |
| b |
由于D、E、C三点共线,
∴
| DE |
| DC |
| a |
| 5 |
| 3 |
| b |
| a |
| 5 |
| 3 |
| b |
由于
| DE |
| DO |
| OE |
| 2 |
| 3 |
| OB |
| OA |
| 2 |
| 3 |
| b |
| a |
∴2λ
| a |
| 5 |
| 3 |
| b |
| 2 |
| 3 |
| b |
| a |
| 5 |
| 3 |
| 2 |
| 3 |
解得 λ=
| 2 |
| 5 |
| 4 |
| 5 |
∴
| DE |
| 4 |
| 5 |
| a |
| 2 |
| 3 |
| b |
点评:本题考查平面向量基本定理及向量的表示,两个向量共线的性质,两个向量坐标形式的运算,属于中档题.
练习册系列答案
相关题目