题目内容
已知双曲线
,直线l过其左焦点F1,交双曲线左支于A、B两点,且|AB|=4,F2为双曲线的右焦点,△ABF2的周长为20,则m的值为
- A.8
- B.9
- C.16
- D.20
B
分析:应用双曲线的定义和△ABF2的周长为20,解出半长轴,可求m的值.
解答:由已知,|AB|+|AF2|+|BF2|=20,又|AB|=4,则|AF2|+|BF2|=16.
据双曲线定义,2a=|AF2|-|AF1|=|BF2|-|BF1|,
所以4a=|AF2|+|BF2|-(|AF1|+|BF1|)=16-4=12,
即a=3,所以m=a2=9,
故选B.
点评:本小题主要考查双曲线的定义、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
分析:应用双曲线的定义和△ABF2的周长为20,解出半长轴,可求m的值.
解答:由已知,|AB|+|AF2|+|BF2|=20,又|AB|=4,则|AF2|+|BF2|=16.
据双曲线定义,2a=|AF2|-|AF1|=|BF2|-|BF1|,
所以4a=|AF2|+|BF2|-(|AF1|+|BF1|)=16-4=12,
即a=3,所以m=a2=9,
故选B.
点评:本小题主要考查双曲线的定义、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关题目