题目内容
已知双曲线A.8
B.9
C.16
D.20
【答案】分析:应用双曲线的定义和△ABF2的周长为20,解出半长轴,可求m的值.
解答:解析:由已知,|AB|+|AF2|+|BF2|=20,又|AB|=4,则|AF2|+|BF2|=16.
据双曲线定义,2a=|AF2|-|AF1|=|BF2|-|BF1|,
所以4a=|AF2|+|BF2|-(|AF1|+|BF1|)=16-4=12,
即a=3,所以m=a2=9,
故选B.
点评:本小题主要考查双曲线的定义、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
解答:解析:由已知,|AB|+|AF2|+|BF2|=20,又|AB|=4,则|AF2|+|BF2|=16.
据双曲线定义,2a=|AF2|-|AF1|=|BF2|-|BF1|,
所以4a=|AF2|+|BF2|-(|AF1|+|BF1|)=16-4=12,
即a=3,所以m=a2=9,
故选B.
点评:本小题主要考查双曲线的定义、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关题目