题目内容
若
(
-
)=
,则常数a,b的值分别为
| lim |
| x→1 |
| a |
| x-1 |
| b |
| x2-1 |
| 1 |
| 2 |
1,2
1,2
.分析:由
=
,知a+a-b=0,从而得到
=
=
=
,由此能求出a和b.
| lim |
| x→1 |
| ax+a-b |
| (x-1)(x+1) |
| 1 |
| 2 |
| lim |
| x→1 |
| ax+a-b |
| (x-1)(x+1) |
| lim |
| x→1 |
| a |
| x+1 |
| a |
| 2 |
| 1 |
| 2 |
解答:解:∵
(
-
)=
,
∴
=
,
∴a+a-b=0,
∴
=
=
=
,
∴a=1,b=2.
故答案为:1,2.
| lim |
| x→1 |
| a |
| x-1 |
| b |
| x2-1 |
| 1 |
| 2 |
∴
| lim |
| x→1 |
| ax+a-b |
| (x-1)(x+1) |
| 1 |
| 2 |
∴a+a-b=0,
∴
| lim |
| x→1 |
| ax+a-b |
| (x-1)(x+1) |
| lim |
| x→1 |
| a |
| x+1 |
| a |
| 2 |
| 1 |
| 2 |
∴a=1,b=2.
故答案为:1,2.
点评:本昰考查极限的运算,解题时要认真审题,仔细解答,注意极限的逆运算的灵活运用.
练习册系列答案
相关题目
若
=p(p∈R,p为常数)则a和p的值分别是( )
| lim |
| x→2 |
| x2+ax-2 |
| x2-4 |
A、0,
| ||||
B、-1,
| ||||
C、
| ||||
D、-1,
|