题目内容

11.如图,已知⊙O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是⊙O的直径.
(1)求证:AC•BC=AD•AE;
(2)过点C作⊙O的切线交BA的延长线于点F,若AF=4,CF=6,求AC的长.

分析 (Ⅰ)首先连接BE,由圆周角定理可得∠C=∠E,又由AD是△ABC的高,AE是△ABC的外接圆的直径,可得∠ADC=∠ABE=90°,则可证得△ADC∽△ABE,然后由相似三角形的对应边成比例,即可证得AC•AB=AD•AE;
(Ⅱ)证明△AFC∽△CFB,即可求AC的长.

解答 (Ⅰ)证明:连接BE,
∵AD是△ABC的高,AE是△ABC的外接圆的直径,
∴∠ADC=∠ABE=90°,
∵∠C=∠E,
∴△ADC∽△ABE.
∴AC:AE=AD:AB,
∴AC•AB=AD•AE,
又AB=BC…(4分)
故AC•BC=AD•AE…(5分)
(Ⅱ)解:∵FC是⊙O的切线,∴FC2=FA•FB…(6分)
又AF=4,CF=6,从而解得BF=9,AB=BF-AF=5…(7分)
∵∠ACF=∠CBF,∠CFB=∠AFC,∴△AFC∽△CFB…(8分)
∴$\frac{AF}{CF}=\frac{AC}{CB}$…(9分)
∴$AC=\frac{10}{3}$…(10分)

点评 此题考查了圆周角定理与相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网