题目内容

已知a,b都是正数,求证:
2ab
a+b
a+b
2
a2+b2
2
,当且仅当a=b时等号成立.
分析:欲证明:“
2ab
a+b
a+b
2
a2+b2
2
”,即要证明两个不等式:“
2ab
a+b
a+b
2
a+b
2
a2+b2
2
”对于前一个可直接利用作差法;对于后一个先将两边的式子平方后再利用作差的方法,作差后结合基本不等式进行证明即得.
解答:证明:因为a>0,b>0
2ab
a+b
-
a+b
2
=
4ab-a2-2ab-b2
2(a+b)
=-
(a-b)2
2(a+b)
≤0?
2ab
a+b
a+b
2

当且仅当a=b时取等号.(5分)(
a+b
2
)2-(
a2+b2
2
)2=
a2+2ab+b2
4
-
a2+b2
2
=
-a2+2ab-b2
4
=-
(a-b)2
4
?(
a+b
2
)2-(
a2+b2
2
)2≤0?(
a+b
2
)2≤(
a2+b2
2
)2?
a+b
2
a2+b2
2

当且仅当a=b时取等号.(11分)
综上知:
2ab
a+b
a+b
2
a2+b2
2
,当且仅当a=b时等号成立.(12分)
点评:这是一道课本习题.本题主要考查了不等式的证明方法,主要方法有:作差法,分析法,综合法都可,作差法是指:应用数的减法运算可以比较两个数的大小,这就是“作差法”,既要比较两个数a与b的大小,可先求出a与b的差a-b与0比较即可.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网