题目内容

18.在锐角△ABC中,角A、B、C的对边分别为a、b、c,且$\sqrt{3}$c=2asinC.
(Ⅰ)求角A;
(Ⅱ)若a=$\sqrt{7}$,且△ABC的面积为$\frac{{3\sqrt{3}}}{2}$,求△ABC的周长.

分析 (I)利用正弦定理得出sinA,sinC的关系,代入条件式得出sinA的值;
(II)根据面积可得bc=6,代入余弦定理可求出b+c.

解答 解:(I)在锐角△ABC中,∵$\sqrt{3}c=2asinC$,∴$\frac{a}{c}=\frac{\sqrt{3}}{2sinC}$,
又∵$\frac{a}{c}=\frac{sinA}{sinC}$,∴sinA=$\frac{\sqrt{3}}{2}$.
∵△是锐角三角形,
∴A=$\frac{π}{3}$.
(Ⅱ)∵$S=\frac{1}{2}bcsinA$=$\frac{\sqrt{3}}{4}bc$=$\frac{3\sqrt{3}}{2}$,
∴bc=6.
由余弦定理得cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{(b+c)^{2}-2bc-{a}^{2}}{2bc}$=$\frac{(b+c)^{2}-12-7}{12}$=$\frac{1}{2}$,
解得b+c=5.
∴△ABC的周长为$a+b+c=\sqrt{7}+5$.

点评 本题考查了正弦定理,余弦定理,三角形的面积公式,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网