题目内容
{an}是等比数列,an>0,a3a6a9=4,则log2a2+log2a4+log2a8+log2+a10=______.
{an}是等比数列,an>0,a3a6a9=a63=4,
∴a6=2
,即log2(a6)=
∴log2a2+log2a4+log2a8+log2a10
=log2(a2?a4?a8?a10)
=log2(a32?a92)
=log2(a64)
=4log2(a6)
=
故答案为:
∴a6=2
| 2 |
| 3 |
| 2 |
| 3 |
∴log2a2+log2a4+log2a8+log2a10
=log2(a2?a4?a8?a10)
=log2(a32?a92)
=log2(a64)
=4log2(a6)
=
| 8 |
| 3 |
故答案为:
| 8 |
| 3 |
练习册系列答案
相关题目