题目内容

若关于x的不等式(1+k2)x≤k4+4的解集是M,则对任意实常数k,总有(  )
A.2∈M,0∈MB.2∉M,0∉MC.2∈M,0∉MD.2∉M,0∈M
方法1:代入判断法,将x=2,x=0分别代入不等式中,判断关于k的不等式解集是
否为R;
方法2:求出不等式的解集:(1+k2)x≤k4+4?x≤
k4+4
k2+1
=(k2+1)+
5
k2+1
-2?x≤[(k2+1)+
5
k2+1
-2]min=2
5
-2

故选A
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网