题目内容

12.设f(x)=log${\;}_{\frac{1}{2}}$$\frac{1-ax}{x-1}$为奇函数,a为常数.
(1)求a的值;
(2)证明f(x)在区间(1,+∞)内单调递增;
(3)若对于区间[2,5]上的每一个x的值,不等式f(x)>($\frac{1}{2}$)x+m恒成立,求实数m的取值范围.

分析 (1)由奇函数的定义,结合对数的运算性质,可得a=-1;
(2)运用单调性的定义,结合对数函数的单调性即可得证;
(3)由题意可得即f(x)-($\frac{1}{2}$)x>m恒成立.令g(x)=f(x)-($\frac{1}{2}$)x.只需g(x)min>m,由g(x)的单调性即可得到最小值.

解答 解:(1)由f(x)是奇函数,即为f(-x)=-f(x),
则$lo{g}_{\frac{1}{2}}\frac{1+ax}{-x-1}$=-log${\;}_{\frac{1}{2}}$$\frac{1-ax}{x-1}$,即有$\frac{1+ax}{-x-1}$=$\frac{x-1}{1-ax}$>0,
即有1-a2x2=1-x2,解得a=±1,
检验a=1(舍),故a=-1.                   
(2)由(1)知f(x)=$lo{g}_{\frac{1}{2}}$($\frac{x+1}{x-1}$),
证明:任取1<m<n,n-1>m-1>0,即有0<$\frac{2}{n-1}$<$\frac{2}{m-1}$,
即1+$\frac{2}{n-1}$<1+$\frac{2}{m-1}$,即0<$\frac{n+1}{n-1}$<$\frac{m+1}{m-1}$,
即有$lo{g}_{\frac{1}{2}}$$\frac{n+1}{n-1}$>$lo{g}_{\frac{1}{2}}$$\frac{m+1}{m-1}$,
即f(n)>f(m),f(x)在(1,+∞)内单调递增.        
(3)对于[2,5]上的每一个x的值,不等式f(x)>($\frac{1}{2}$)x+m恒成立,
即f(x)-($\frac{1}{2}$)x>m恒成立.
令g(x)=f(x)-($\frac{1}{2}$)x.只需g(x)min>m,
又易知g(x)在[2,5]上是增函数,
∴g(x)min=g(2)=$lo{g}_{\frac{1}{2}}$3-$\frac{1}{4}$,
则当m<$lo{g}_{\frac{1}{2}}$3-$\frac{1}{4}$时原式恒成立.

点评 本题考查函数的性质和运用,考查不等式恒成立问题的解法,注意运用参数分离和函数的单调性,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网