ÌâÄ¿ÄÚÈÝ
| BC |
| AB |
| AB |
| BC |
| AB |
| BC |
| OA1 |
| OA1 |
| 1 |
| 2 |
| 2¦Ð |
| 3 |
| An-1An |
·ÖÎö£ºÀûÓÃ(
£¬
)±ä»»µÄ¶¨Òå£¬ÍÆµ¼Öª
=
+
+¡+
µÄÏòÁ¿×ø±ê£¬È»ºóÇó³öan£¬bnµÄ±í´ïʽ£¬È»ºó½øÐмÆËã¼´¿É£®
| 1 |
| 2 |
| 2¦Ð |
| 3 |
| OA |
| OA1 |
| A1A2 |
| An-1An |
½â´ð£º½â£ºÏòÁ¿
=(4£¬0)£¬¾¹ý1´Î±ä»»ºóµÃµ½
=(2cos?
£¬2sin?
)=(-1£¬
)£¬ÔòA2(-1£¬
)£¬
ËùÒÔa2=-1£¬b2=
£¬¼´AÕýÈ·£®
ÔòÓÉÌâÒâÖª
=
+
+¡+
=(4£¬0)+(2cos?
£¬2sin?
)+(cos?
£¬sin?
)+¡+((
)n-3cos?
£¬(
)n-3sin?
)£¬
ËùÒÔan=4+2cos?
+cos?
+¡+(
)n-3cos?
£¬bn=4+2sin?
+sin?
+¡+(
)n-3sin?
£®
ËùÒÔb3k+1-b3k=(
)3k+1-3sin?
=(
)3k+1-3sin?
=(
)3k+1-3sin?2k¦Ð=0£¬
ËùÒÔBÕýÈ·£®
a3k+1-a3k-1=(
)3k+1-3cos?
-(
)3k-3cos?
=(
)3k-2cos?2k¦Ð-(
)3k-3cos?(2k¦Ð-
)
=(
)3k-2-(
)3k-3¡Á
=(
)3k-2-(
)3k-2=0£¬
ËùÒÔCÕýÈ·£®
¹Ê´íÎóµÄÊÇD£®
¹ÊÑ¡D£®
| OA1 |
| OA2 |
| 2¦Ð |
| 3 |
| 2¦Ð |
| 3 |
| 3 |
| 3 |
ËùÒÔa2=-1£¬b2=
| 3 |
ÔòÓÉÌâÒâÖª
| OA |
| OA1 |
| A1A2 |
| An-1An |
| 2¦Ð |
| 3 |
| 2¦Ð |
| 3 |
| 4¦Ð |
| 3 |
| 4¦Ð |
| 3 |
| 1 |
| 2 |
| 2(n-1)¦Ð |
| 3 |
| 1 |
| 2 |
| 2(n-1)¦Ð |
| 3 |
ËùÒÔan=4+2cos?
| 2¦Ð |
| 3 |
| 4¦Ð |
| 3 |
| 1 |
| 2 |
| 2(n-1)¦Ð |
| 3 |
| 2¦Ð |
| 3 |
| 4¦Ð |
| 3 |
| 1 |
| 2 |
| 2(n-1)¦Ð |
| 3 |
ËùÒÔb3k+1-b3k=(
| 1 |
| 2 |
| 2(3k+1-1)¦Ð |
| 3 |
| 1 |
| 2 |
| 2¡Á3k¦Ð |
| 3 |
| 1 |
| 2 |
ËùÒÔBÕýÈ·£®
a3k+1-a3k-1=(
| 1 |
| 2 |
| 2(3k+1-1)¦Ð |
| 3 |
| 1 |
| 2 |
| 2(3k-1)¦Ð |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| ¦Ð |
| 3 |
=(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
ËùÒÔCÕýÈ·£®
¹Ê´íÎóµÄÊÇD£®
¹ÊÑ¡D£®
µãÆÀ£º±¾ÌâÊÇж¨ÒåÌâÄ¿£¬Ê×ÏȶÁ¶®Ð¶¨ÒåµÄʵÖÊ£¬×ª»¯³ÉÎÒÃÇÒÑÓеÄ֪ʶ²¢½â¾ö£®±¾ÌâʵÖÊ¿¼²éÏòÁ¿µÄ×ø±êÔËË㣬¼¸ºÎÔËË㣬ÄѶȽϴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿