题目内容
设M=
+
+…+
+
,则M的值为( )
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n(n+1) |
| 1 |
| 2012×2013 |
分析:由于
=
-
,累加求和即可求得答案.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:∵M=
+
+…+
+…+
=(1-
)+(
-
)+…+(
-
)+…+
-
=1-
=
.
故选B.
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n(n+1) |
| 1 |
| 2012×2013 |
=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2012 |
| 1 |
| 2013 |
=1-
| 1 |
| 2013 |
=
| 2012 |
| 2013 |
故选B.
点评:本题考查数列的裂项法求和,每一项裂为相邻两项之差是关键,属于中档题.
练习册系列答案
相关题目