题目内容
已知n∈N*,求证:| 1 |
| 1×20 |
| 1 |
| 2×21 |
| 1 |
| 3×22 |
| 1 |
| n×2n-1 |
| 3 |
| 2 |
分析:由
+
+
+…+
≤1+
+
+…+
利用等比数列的求和公式求得其值为 1+
=
-(
)n,显然小于
.
| 1 |
| 1×20 |
| 1 |
| 2×21 |
| 1 |
| 3×22 |
| 1 |
| n×2n-1 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
利用等比数列的求和公式求得其值为 1+
| ||||
1-
|
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
解答:证明:∵
+
+
+…+
≤1+
+
+…+
=1+
=
-(
)n<
,
故
+
+
+…+
<
成立.
| 1 |
| 1×20 |
| 1 |
| 2×21 |
| 1 |
| 3×22 |
| 1 |
| n×2n-1 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
=1+
| ||||
1-
|
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
故
| 1 |
| 1×20 |
| 1 |
| 2×21 |
| 1 |
| 3×22 |
| 1 |
| n×2n-1 |
| 3 |
| 2 |
点评:本题考查用放缩法证明不等式,等比数列的求和公式,利用当n≥2时
≤
,是解题的关键.
| 1 |
| n×2n-1 |
| 1 |
| 2n |
练习册系列答案
相关题目