题目内容
(本小题满分13分)已知抛物线C:
与直线l:
没有公共点,设点P为直线l上的动点,过P作抛物线C的两条切线,A,B为切点.
(1)证明:直线AB恒过定点Q;
(2)若点P与(1)中的定点Q的连线交抛物线C于M,N两点,证明:
.
(1)证明:直线AB恒过定点Q;
(2)若点P与(1)中的定点Q的连线交抛物线C于M,N两点,证明:
见解析
(1)设
,则
.
由
得
,所以
.
于是抛物线C在A点处的切线方程为
,即
.
设
,则有
.设
,同理有
.
所以AB的方程为
,即
,所以直线AB恒过定点
.
(2) PQ的方程为
,与抛物线方程
联立,消去y,得
.
设
,
,则
①
要证
,只需证明
,即
②
由①知,②式左边=
.故②式成立,从而结论成立.
由
于是抛物线C在A点处的切线方程为
设
所以AB的方程为
(2) PQ的方程为
设
要证
由①知,②式左边=
练习册系列答案
相关题目