题目内容
| OF |
| FP |
(1)若
| 1 |
| 2 |
| ||
| 2 |
| OF |
| FP |
(2)若S=
| 3 |
| 4 |
| OF |
| OF |
| OP |
分析:(Ⅰ)令 <
,
>=θ,由题设知 |
| |
| =
,S=
tanθ,∵
<S<
,∴1<tanθ<
,由此可求出 <
,
>的范围..
(Ⅱ)以O为原点,OF所在直线为x轴建立直角坐标系,并令Q(m,n),则F(c,0),由题设知
•
=c(m-c)=1.m=c+
,Q(c+
,
).由此知 |
|2 =(c+
)2+
,由此入手,当 |
|取最小值时,能够求出椭圆的方程.
| OF |
| FQ |
| OF |
| FQ |
| 1 |
| cosθ |
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 3 |
| OF |
| FQ |
(Ⅱ)以O为原点,OF所在直线为x轴建立直角坐标系,并令Q(m,n),则F(c,0),由题设知
| OF |
| FQ |
| 1 |
| c |
| 1 |
| c |
| 3 |
| 2 |
| OQ |
| 1 |
| c |
| 9 |
| 4 |
| OQ |
解答:解:(Ⅰ)令 <
,
>=θ,
∵
•
=1,∴|
| |
| cosθ=1,∴|
| |
| =
,
∵S=
|
| |
| sin(π-θ)=
|
| |
| sinθ,
∴S=
tanθ,∵
<S<
,∴1<tanθ<
,
∵θ∈[0,π],∴
<θ<
.
(Ⅱ)以O为原点,OF所在直线为x轴建立直角坐标系,并令Q(m,n),则F(c,0),
且
,∴n=
.
∵
=(c,0),
=(m-c,n),
∴
•
=c(m-c)=1.
∴m=c+
,∴Q(c+
,
).
∴|
|2 =(c+
)2+
,
∵c≥2,
∴当c=2时,|
|最小,此时Q(
,
),
设椭圆方程为
+
=1(a>b>0),
∴
,
∴a2=10,b2=6.
∴所求椭圆为
+
=1.
| OF |
| FQ |
∵
| OF |
| FQ |
| OF |
| FQ |
| OF |
| FQ |
| 1 |
| cosθ |
∵S=
| 1 |
| 2 |
| OF |
| FQ |
| 1 |
| 2 |
| OF |
| FQ |
∴S=
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 3 |
∵θ∈[0,π],∴
| π |
| 4 |
| π |
| 3 |
(Ⅱ)以O为原点,OF所在直线为x轴建立直角坐标系,并令Q(m,n),则F(c,0),
且
|
| 3 |
| 2 |
∵
| OF |
| FQ |
∴
| OF |
| FQ |
∴m=c+
| 1 |
| c |
| 1 |
| c |
| 3 |
| 2 |
∴|
| OQ |
| 1 |
| c |
| 9 |
| 4 |
∵c≥2,
∴当c=2时,|
| OQ |
| 5 |
| 2 |
| 3 |
| 2 |
设椭圆方程为
| x2 |
| a2 |
| y2 |
| b2 |
∴
|
∴a2=10,b2=6.
∴所求椭圆为
| x2 |
| 10 |
| y2 |
| 6 |
点评:本题考查圆锥曲线的性质和应用,解题时要认真审题,仔细解答,注意积累解题方法.
练习册系列答案
相关题目