题目内容
5.已知存在0<α<$\frac{π}{2}$,0<β<$\frac{π}{2}$,0<α+β<$\frac{π}{2}$,使得方程sin$\frac{α}{2}$=kcosβ有根,则k的取值范围是[0,$\frac{\sqrt{2}}{2}$].分析 根据0<α<$\frac{π}{2}$,0<β<$\frac{π}{2}$,0<α+β<$\frac{π}{2}$,求解$\frac{α}{2}$的范围,可得sin$\frac{α}{2}$的范围.求cosβ的范围,从而可以得解.
解答 解:由0<α<$\frac{π}{2}$,0<β<$\frac{π}{2}$,0<α+β<$\frac{π}{2}$,
可得:0<$\frac{α}{2}$$<\frac{π}{4}$,即0<sin$\frac{α}{2}$$<\frac{\sqrt{2}}{2}$,
由题意,0<kcosβ$<\frac{\sqrt{2}}{2}$.
∵0<cosβ<1
∴0$<k<\frac{\sqrt{2}}{2}$.
故答案为[0,$\frac{\sqrt{2}}{2}$].
点评 本题考查了三角函数的范围问题的计算.利用三角函数的有界限范围求解.属于基础题.
练习册系列答案
相关题目
1.已知cos($\frac{2π}{3}$-α)=$\frac{3}{4}$,则sin(α-$\frac{π}{6}$)cos($\frac{π}{3}$-2α)=( )
| A. | $\frac{3}{32}$ | B. | -$\frac{3}{32}$ | C. | $\frac{3}{16}$ | D. | -$\frac{3}{16}$ |
19.已知数列{an}满足a1=1,an+1an+Sn=5,则a2=( )
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
14.
如图在正方体ABCD-A1B1C1D1中,P是上底面A1B1C1D1内一动点,PM垂直AD于M,PM=PB,则点P的轨迹为( )
| A. | 线段 | B. | 椭圆一部分 | C. | 抛物线一部分 | D. | 双曲线一部分 |