题目内容

在三棱锥S—ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点.

(Ⅰ)证明:AC⊥SB;

(Ⅱ)求二面角N—CM—B的大小;

(Ⅲ)求点B到平面CMN的距离.

(1)证明见解析(2)arccos.(3)


解析:

(Ⅰ)取AC中点O,连结OS、OB.

∵SA=SC,AB=BC,

∴AC⊥SO且AC⊥BO.

∵平面SAC⊥平面ABC,平面SAC∩平面  ABC=AC

∴SO⊥面ABC,∴SO⊥BO.

如图所示建立空间直角坐标系O-xyz.

则A(2,0,0),B(0,2,0),C(-2,0,0),

S(0,0,2),M(1,,0),N(0,).

=(-4,0,0),=(0,2,-2),

·=(-4,0,0)·(0,2,-2)=0,

∴AC⊥SB.

(Ⅱ)由(Ⅰ)得=(3,,0),=(-1,0,).设n=(x,y,z)为平面CMN的一个法向量,

          

·n=3x+y=0,

则                                   取z=1,则x=,y=-

·n=-x+z=0,

∴n=(,-,1),

=(0,0,2)为平面ABC的一个法向量,

∴cos<n,>==.

∴二面角N-CM-B的大小为arccos.

(Ⅲ)由(Ⅰ)(Ⅱ)得=(-1,,0),n=(,-,1)为平面CMN的一个法向量,

∴点B到平面CMN的距离d==.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网