题目内容

在数列{an}中,a1=1,an+1=2an+2n
(Ⅰ)设bn=
an
2n-1
.证明:数列{bn}是等差数列;
(Ⅱ)求数列{an}的前n项和Sn
由an+1=2an+2n.两边同除以2n
an+1
2n
=
an
2n-1
+1

an+1
2n
-
an
2n-1
=1
,即bn+1-bn=1
∴{bn}以1为首项,1为公差的等差数列
(2)由(1)得
an
2n-1
=1+(n-1)×1=n

∴an=n•2n-1
Sn=20+2×21+3×22+…+n•2n-1
2Sn=21+2×22+…+(n-1)•2n-1+n•2n
∴-Sn=20+21+22+…+2n-1-n•2n
=
1-2n
1-2
- n•2n=(1-n)•2n-1

∴Sn=(n-1)•2n+1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网