题目内容
已知直线l1:ax-2y=2a-4,l2:2x+a2y=2a2+4,当0<a<2时,直线l1,l2与两坐标轴围成一个四边形,当四边形的面积最小时,则a=________.
解析:由题意知直线l1,l2恒过定点P(2,2),直线l1的纵截距为2-a,直线l2的横截距为a2+2,所以四边形的面积S=
×2×(2-a)+
×2×(a2+2)=a2-a+4=
+
,当a=
时,面积最小.
练习册系列答案
相关题目
题目内容
已知直线l1:ax-2y=2a-4,l2:2x+a2y=2a2+4,当0<a<2时,直线l1,l2与两坐标轴围成一个四边形,当四边形的面积最小时,则a=________.
解析:由题意知直线l1,l2恒过定点P(2,2),直线l1的纵截距为2-a,直线l2的横截距为a2+2,所以四边形的面积S=
×2×(2-a)+
×2×(a2+2)=a2-a+4=
+
,当a=
时,面积最小.