题目内容
已知圆G:
经过椭圆
的右焦点F及上顶点B.过椭圆外一点![]()
且倾斜角为
的直线
交椭圆于C、D两点.
(1) 求椭圆方程;
(2) 若右焦点F在以CD为直径的圆E的内部,求
的取值范围。
【答案】
(1)
(2)
<m<
.
【解析】本试题主要是考查了椭圆方程的求解,以及直线与椭圆的位置关系的综合运用。联立方程组结合判别式得到参数的范围。
(1)依据题意可求得F,B的坐标,求得c和b,进而求得a,则椭圆的方程可得
2)设出直线l的方程,与椭圆方程联立消去,利用判别式大于0求得m的范围,设出C,D的坐标,利用韦达定理表示出x1+x2和进而利用直线方程求得y1y2,表示出FC
和 FD ,进而求得 FC • FD 的表达式,利用F在圆E的内部判断出 FC • FD <0求得m的范围,最后综合可求得m范围
练习册系列答案
相关题目