题目内容
【题目】动圆
过定点
,且在
轴上截得的弦
的长为4.
(1)若动圆圆心
的轨迹为曲线
,求曲线
的方程;
(2)在曲线
的对称轴上是否存在点
,使过点
的直线
与曲线
的交点
满足
为定值?若存在,求出点
的坐标及定值;若不存在,请说明理由.
【答案】(1)
.(2)存在点
,定值为
.
【解析】
(1)设
,由题意知:
,利用距离公式及弦长公式可得方程,化简可得P的轨迹方程;
(2)假设存在
,设![]()
,由题意知直线
的斜率必不为0,设直线
的方程,与抛物线联立,利用根与系数关系可求得
,当
时,上式
,与
无关,为定值.
(1)设
,由题意知:
.
当
点不在
轴上时,过
做
,交
于点
,则
为
的中点,
,
.
又
,
,化简得
;
当
点在
轴上时,易知
点与
点重合.
也满足
,
曲线
的方程为
.
(2)假设存在
,满足题意.
设![]()
.由题意知直线
的斜率必不为0,
设直线
的方程为
.
由
得
.
,
.
,
.
,
,
![]()
![]()
![]()
,
.
,
当
时,上式
,与
无关,为定值.
存在点
,使过点
的直线
与曲线
的交点
满足
为定值
.
【题目】“微信运动”已成为当下热门的运动方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:
步数 性别 | 0-2000 | 2001-5000 | 5001-8000 | 8001-10000 | >10000 |
男 | 1 | 2 | 3 | 6 | 8 |
女 | 0 | 2 | 10 | 6 | 2 |
| 0.10 | 0.05 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
附: ![]()
(1)已知某人一天的走路步数超过8000步被系统评定为“积极型”,否则为“懈怠型”,根据题意完成下面的
列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?
积极型 | 懈怠型 | 总计 | |
男 | |||
女 | |||
总计 |
(2)若小王以这40位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选2人,其中每日走路不超过5000步的有
人,超过10000步的有
人,设
,求
的分布列及数学期望.
【题目】目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如下图所示的频率分布直方图(用频率作为概率).潜伏期不高于平均数的患者,称为“短潜伏者”,潜伏期高于平均数的患者,称为“长潜伏者”.
![]()
(1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中“长潜伏者”的人数;
(2)为研究潜伏期与患者年龄的关系,以潜伏期是否高于平均数为标准进行分层抽样,从上述500名患者中抽取300人,得到如下列联表,请将列联表补充完整,并根据列联表判断是否有97.5%的把握认为潜伏期长短与患者年龄有关;
短潜伏者 | 长潜伏者 | 合计 | |
60岁及以上 | 90 | ||
60岁以下 | 140 | ||
合计 | 300 |
(3)研究发现,某药物对新冠病毒有一定的抑制作用,需要在抽取的300人中分层选取7位60岁以下的患者做Ⅰ期临床试验,再从选取的7人中随机抽取两人做Ⅱ期临床试验,求两人中恰有1人为“长潜伏者”的概率.
附表及公式:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
![]()