题目内容
3、极坐标方程ρ=4cosθ化为直角坐标方程是( )
分析:先将原极坐标方程ρ=4cosθ两边同乘以ρ后化成直角坐标方程,再利用直角坐标方程进行判断.
解答:解:将原极坐标方程ρ=4cosθ,化为:
ρ2=4ρcosθ,
化成直角坐标方程为:x2+y2-4x=0,
即y2+(x-2)2=4.
故选A.
ρ2=4ρcosθ,
化成直角坐标方程为:x2+y2-4x=0,
即y2+(x-2)2=4.
故选A.
点评:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.
练习册系列答案
相关题目