题目内容
如图,四棱椎F-ABCD的底面ABCD是菱形,其对角线AC=2,BD=.AE、CF都与平面ABCD垂直,AE=1,CF=2.
(Ⅰ) 求二面角B-AF-D的大小;
(Ⅱ) 求四棱锥E-ABCD与四棱锥F-ABCD公共部分的体积。
![]()
(Ⅰ) 二面角B-AF-D的大小等于
。
(Ⅱ) 四棱锥E-ABCD与四棱锥F-ABCD公共部分的体积
解析:
I)(综合法)连接AC、BD交于菱形的中心O,过O作OG
AF,
G为垂足。连接BG、DG。由BD
AC,BD
CF得BD
平面ACF,故BD
AF。
于是AF
平面BGD,所以BG
AF,DG
AF,
BGD为二面角B-AF-D 的平面角。
由
,
,得
,![]()
由
,得![]()
![]()
![]()
(向量法)以A为坐标原点,
、
、
方向分别为x轴、y轴、z轴的正方向建立空间直角坐标系(如图)
设平面ABF的法向量
,则由
得![]()
令
,得
,![]()
同理,可求得平面ADF的法向量
。
由
知,平面ABF与平面ADF垂直,
二面角B-AF-D的大小等于
。
(II)连EB、EC、ED,设直线AF与直线CE相交于点H,则四棱锥E-ABCD与四棱锥F-ABCD的公共部分为四棱锥H-ABCD。
过H作HP⊥平面ABCD,P为垂足。
因为EA⊥平面ABCD,FC⊥平面ABCD,,所以平面ACFE⊥平面ABCD,从而![]()
由
得
。
又因为![]()
故四棱锥H-ABCD的体积
练习册系列答案
相关题目