题目内容
20.在锐角三角形ABC中,角A,B所对的边分别为a,b,若2asinB=b,则角A=( )| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{12}$ | D. | $\frac{π}{3}$ |
分析 利用正弦定理化简已知的等式,根据sinB不为0得出sinA的值,由A为锐角三角形的内角,利用特殊角的三角函数值即可求出A的度数.
解答 解:利用正弦定理化简b=2asinB得:sinB=2sinAsinB,
∵sinB≠0,
∴sinA=$\frac{1}{2}$,
∵A为锐角,
∴A=$\frac{π}{6}$.
故选:A.
点评 此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.
练习册系列答案
相关题目
10.已知圆x2+y2-2x+4y+1=0和两坐标轴的公共点分别为 A,B,C,则△ABC的面积为( )
| A. | 4 | B. | 2 | C. | $2\sqrt{3}$ | D. | $\sqrt{3}$ |
11.已知角α的终边上有一点P(1,3),则$\frac{sin(π-α)-sin(\frac{π}{2}+α)}{cos(\frac{3π}{2}-α)+2cos(-π+α)}$的值为( )
| A. | -$\frac{2}{5}$ | B. | -$\frac{4}{5}$ | C. | -$\frac{4}{7}$ | D. | -4 |
5.已知α∈(-$\frac{π}{4}$,0),且sin2α=-$\frac{24}{25}$,则sinα+cosα=( )
| A. | -$\frac{1}{5}$ | B. | $\frac{1}{5}$ | C. | -$\frac{7}{5}$ | D. | $\frac{7}{5}$ |
12.已知下表中的对数值有且只有一个是错误的.
其中错误的对数值是lg1.5.
| x | 1.5 | 3 | 5 | 6 | 8 | 9 |
| lg x | 4a-2b+c | 2a-b | a+c | 1+a-b-c | 3[1-(a+c)] | 2(2a-b) |