题目内容

设函数f(x)=ex-x(e为自然对数的底数).
(1)求f(x)的单调区间;
(2)证明:当x∈R时,ex≥x+1.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的单调性
专题:综合题,导数的综合应用
分析:(1)先求导数,然后根据导数的正负,可得函数的单调性;
(2)研究函数的极值点,连续函数f(x)在区间(a,b)内只有一个极值,那么极小值就是最小值,即可证明结论.
解答: (1)解:的导数f′(x)=ex-1
令f′(x)>0,解得x>0;令f′(x)<0,解得x<0.
从而f(x)在(-∞,0)内单调递减,在(0,+∞)内单调递增;
(2)证明:由(1)知当x=0时,f(x)取得最小值1,
∴ex-x≥1,
∴当x∈R时,ex≥x+1.
点评:本题主要考查了函数的单调性,考查利用导数求闭区间上函数的最值,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网