题目内容
函数的单调递增区间为 .
数列满足,则的前项和为
如图,O为等腰三角形ABC内一点,⊙O与ΔABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点。
(1)证明:EF∥BC;
(2)若AG等于⊙O的半径,且,求四边形EBCF的面积.
一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )
A. B. C. D.
已知 (a>0)是定义在R上的偶函数,
(1)求实数a的值;
(2)判断并证明函数在的单调性;
(3)若关于的不等式的解集为,求实数的取值范围.
函数的大致图象是( )
在四棱柱中,底面,底面为菱形,为与交点,已知,.
(Ⅰ)求证:平面;
(Ⅱ)求证:∥平面;
(Ⅲ)设点在内(含边界),且,说明满足条件的点的轨迹,并求的最小值.
如图,在棱长为2的正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,M,N分别是棱DD1,D1C1的中点,则直线OM( )
A.与AC,MN均垂直相交
B.与AC垂直,与MN不垂直
C.与MN垂直,与AC不垂直
D.与AC,MN均不垂直
将函数的图象经过怎样的平移,可以得到函数的图象( )
A.向左平移个单位 B.向左平移个单位
C.向右平移个单位 D.向右平移个单位