题目内容
已知某三棱锥的三视图如图所示,则该三棱锥的体积是 .
设函数,,其中.
(Ⅰ)求的单调区间;
(Ⅱ)若存在极值点,且,其中,求证:;
(Ⅲ)设,函数,求证:在区间上的最大值不小于.
已知.
(Ⅰ)讨论的单调性;
(Ⅱ)当时,证明对于任意的成立.
某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是,样本数据分组为 .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是
(A)56 (B)60 (C)120 (D)140
如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD.
(Ⅰ)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;
(Ⅱ)证明:平面PAB⊥平面PBD.
某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30)
(A)2018年 (B)2019年 (C)2020年 (D)2021年
设函数f(x)=ax2-a-lnx,其中a∈R.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)确定a的所有可能取值,使得f(x) >在区间(1,+∞)内恒成立(=2.718…为自然对数的底数).
为了得到函数的图象,只需把函数的图象上所有的点
(A)向左平行移动个单位长度
(B)向右平行移动个单位长度
(C)向左平行移动个单位长度
(D)向右平行移动个单位长度
在的二项展开式中,所有项的二项式系数之和为256,则常数项等于_________.