题目内容
19.在△ABC中,角A,B,C所对的边分别为a,b,c,若$\sqrt{3}$(acosB+bcosA)=2csinC,a+b=4,且△ABC的面积的最大值为$\sqrt{3}$,则此时△ABC的形状为( )| A. | 锐角三角形 | B. | 直线三角形 | C. | 等腰三角形 | D. | 正三角形 |
分析 由 $\sqrt{3}$(acosB+bcosA)=2csinC及正弦定理可得 $\sqrt{3}$(sinAcosB+sinBcosA)=2sin2C,结合sinC>0,化简可得sinC=$\frac{\sqrt{3}}{2}$,由a+b=4,利用基本不等式可得ab≤4,(当且仅当a=b=2成立),由△ABC的面积的最大值S△ABC=$\frac{1}{2}$absinC≤$\frac{1}{2}$×4×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,即可解得a=b=2,从而得解△ABC的形状为等腰三角形.
解答 解:∵$\sqrt{3}$(acosB+bcosA)=2csinC,
∴$\sqrt{3}$(sinAcosB+sinBcosA)=2sin2C,
∴$\sqrt{3}$sinC=2sin2C,且sinC>0,
∴sinC=$\frac{\sqrt{3}}{2}$,
∵a+b=4,可得:4≥2 $\sqrt{ab}$,解得:ab≤4,(当且仅当a=b=2成立)
∵△ABC的面积的最大值S△ABC=$\frac{1}{2}$absinC≤$\frac{1}{2}$×4×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
∴a=b=2,
∴则此时△ABC的形状为等腰三角形.
故选:C.
点评 本题主要考查了正弦定理,三角形面积公式,基本不等式的应用,属于基本知识的考查.
练习册系列答案
相关题目
6.
如图所示,已知点G是△ABC的重心,过点G作直线与AB,AC两边分别交于M,N两点,且$\overrightarrow{AM}$=x$\overrightarrow{AB}$,$\overrightarrow{AN}$=y$\overrightarrow{AC}$,则x+y的最小值为( )
| A. | 2 | B. | $\frac{1}{3}$ | C. | $\frac{4}{3}$ | D. | $\frac{3}{4}$ |