题目内容
(2012•杭州二模)在△ABC中,角A,B,C所对的边分别为a,b,c,设向量
=(a,
),
=(cosC,c-2b),且
⊥
.
(Ⅰ)求角A的大小;
(Ⅱ)若a=1,求△ABC的周长l的取值范围.
| m |
| 1 |
| 2 |
| n |
| m |
| n |
(Ⅰ)求角A的大小;
(Ⅱ)若a=1,求△ABC的周长l的取值范围.
分析:(Ⅰ)利用向量的垂直,推出数量积为0,通过三角形内角和以及两角和的正弦函数,确定角A的大小;
(Ⅱ)若a=1,利用正弦定理求出b、c的表达式,通过三角形的内角和以及两角和的正弦函数化简表达式,根据角的范围,确定三角函数的范围,然后求△ABC的周长l的取值范围.
(Ⅱ)若a=1,利用正弦定理求出b、c的表达式,通过三角形的内角和以及两角和的正弦函数化简表达式,根据角的范围,确定三角函数的范围,然后求△ABC的周长l的取值范围.
解答:解:(Ⅰ)由题意
⊥
.可知:
•
=0,
即acosC+
c=b,得sinAcosC+
sinC=sinB.
又sinB=sin(A+C)=sinAcosB+cosAsinC.
∴
sinC=cosAsinC,∵sinC≠0,∴cosA=
.
又0<A<π∴A=
.
(Ⅱ)由正弦定理得:b=
=
sinB,c=
sinC,
l=a+b+c=1+
(sinB+sinC)=1+
(sinB+sin(A+B))
=1+2(
sinB+
cosB)
=1+2sin(B+
).
∵A=
.
∴B∈(0,
),∴B+
∈(
,
),
∴sin(B+
)∈(
,1].
故△ABC的周长l的范围为(2,3].
| m |
| n |
| m |
| n |
即acosC+
| 1 |
| 2 |
| 1 |
| 2 |
又sinB=sin(A+C)=sinAcosB+cosAsinC.
∴
| 1 |
| 2 |
| 1 |
| 2 |
又0<A<π∴A=
| π |
| 3 |
(Ⅱ)由正弦定理得:b=
| asinB |
| sinA |
| 2 | ||
|
| 2 | ||
|
l=a+b+c=1+
| 2 | ||
|
| 2 | ||
|
=1+2(
| ||
| 2 |
| 1 |
| 2 |
=1+2sin(B+
| π |
| 6 |
∵A=
| π |
| 3 |
∴B∈(0,
| 2π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
∴sin(B+
| π |
| 6 |
| 1 |
| 2 |
故△ABC的周长l的范围为(2,3].
点评:本题考查正弦定理,两角和的正弦函数,向量的数量积等知识的应用,考查计算能力.
练习册系列答案
相关题目