题目内容
已知函数f(x)满足f(x+1)=-
,且f(x)是偶函数,当x∈[0,1]时,f(x)=x2,若在区间[-1,3]内,函数g(x)=f(x)-kx-k有4个零点,则实数k的取值范围是( )
| 1 |
| f(x) |
A.[
| B.(0,
| C.(0,
| D.(
|
∵函数f(x)满足f(x+1)=-
,故有f(x+2)=f(x),故f(x)是周期为2的周期函数.再由f(x)是偶函数,当x∈[0,1]时,f(x)=x2,
可得当x∈[-1,0]时,f(x)=x2,故当x∈[-1,1]时,f(x)=x2 ,当x∈[1,3]时,f(x)=(x-2)2.
由于函数g(x)=f(x)-kx-k有4个零点,故函数y=f(x)的图象与直线y=kx+k 有4个交点,如图所示:

把点(3,1)代入y=kx+k,可得k=
,数形结合可得实数k的取值范围是 (0,
],
故选C.
| 1 |
| f(x) |
可得当x∈[-1,0]时,f(x)=x2,故当x∈[-1,1]时,f(x)=x2 ,当x∈[1,3]时,f(x)=(x-2)2.
由于函数g(x)=f(x)-kx-k有4个零点,故函数y=f(x)的图象与直线y=kx+k 有4个交点,如图所示:
把点(3,1)代入y=kx+k,可得k=
| 1 |
| 4 |
| 1 |
| 4 |
故选C.
练习册系列答案
相关题目