题目内容
8.已知函数f(x)的定义域是[1,5],则f(2x-1)的定义域是[1,3].分析 由2x-1在已知函数定义域内求得x的范围得答案.
解答 解:∵函数f(x)的定义域是[1,5],
∴由1≤2x-1≤5,得1≤x≤3.
∴f(2x-1)的定义域是[1,3].
故答案为:[1,3].
点评 本题考查函数的定义域及其求法,关键是掌握该类问题的求解方法,是基础题.
练习册系列答案
相关题目
18.11月11日在某购物网站消费不超过10000元的2000名网购者中有女士1100名,男士900名.该网站为优化营销策略,根据性别采用分层抽样的方法从这2000名网购者中抽取200名进行分析得到下表(消费金额:元)
女士消费情况:
男士消费情况:
(Ⅰ)计算x,y的值,在抽出的200名且消费金额在[8000,10000](单位:元)的网购者中随机选出2名发放网购红包,求选出的两名网购者都是男士的概率;
(Ⅱ)若消费金额不低于6000元的网购者为“网购达人”,低于6000元的网购者为“非网购达人”,根据以上数据填写下面2×2列连表,并回答能否在犯错误率不超过0.05的前提下,认为“是否为网购达人与性别有关”?
附:
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)},n=a+b+c+d$.
女士消费情况:
| 消费金额 | (0,2000) | [2000,4000) | [4000,6000) | [6000,8000) | [8000,10000] |
| 人数 | 10 | 25 | 35 | 35 | x |
| 消费金额 | (0,2000) | [2000,4000) | [4000,6000) | [6000,8000) | [8000,10000] |
| 人数 | 15 | 30 | 25 | y | 3 |
(Ⅱ)若消费金额不低于6000元的网购者为“网购达人”,低于6000元的网购者为“非网购达人”,根据以上数据填写下面2×2列连表,并回答能否在犯错误率不超过0.05的前提下,认为“是否为网购达人与性别有关”?
| 女士 | 男士 | 总计 | |
| 网购达人 | |||
| 非网购达人 | |||
| 总计 |
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
19.已知F1,F2是椭圆$C:\frac{x^2}{8}+\frac{y^2}{4}=1$的两个焦点,在C上满足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0的点P的个数为( )
| A. | 0 | B. | 2 | C. | 4 | D. | 无数个 |
17.若函数f(x)满足f(-x)=f(x),且x>0时,f(x)=3x,则x<0时,f(x)等于( )
| A. | 3-x | B. | 3x | C. | -3-x | D. | -3x |
18.如果函数f(x)=x2+2(a-1)x+2的单调减区间是(-∞,4],则a=( )
| A. | 3 | B. | -3 | C. | 5 | D. | -5 |