题目内容
已知x∈R,向量
=(acos2x, 1),
=(2,
asin2x-a),f(x)=
•
,a≠0.
(Ⅰ)求函数f(x)解析式,并求当a>0时,f(x)的单调递增区间;
(Ⅱ)当x∈[0,
]时,f(x)的最大值为5,求a的值.
| OA |
| OB |
| 3 |
| OA |
| OB |
(Ⅰ)求函数f(x)解析式,并求当a>0时,f(x)的单调递增区间;
(Ⅱ)当x∈[0,
| π |
| 2 |
(Ⅰ)f(x)=2acos2x+
asin2x-a(2分)
=
asin2x+acos2x(4分)
=2asin(2x+
).(6分)
当2kπ-
≤2x+
≤2kπ+
(k∈Z)时,
即kπ-
≤x≤kπ+
(k∈Z)时.
f(x)为增函数,即f(x)的增区间为[kπ-
,kπ+
](k∈Z)(9分)
(Ⅱ)f(x)=2asin(2x+
),当x∈[0,
]时,2x+
∈[
,
].
若a>0,当2x+
=
时,f(x)最大值为2a=5,则a=
.(11分)
若a<0,当2x+
=
时,f(x)的最大值为-a=5,则a=-5.(13分)
| 3 |
=
| 3 |
=2asin(2x+
| π |
| 6 |
当2kπ-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
即kπ-
| π |
| 3 |
| π |
| 6 |
f(x)为增函数,即f(x)的增区间为[kπ-
| π |
| 3 |
| π |
| 6 |
(Ⅱ)f(x)=2asin(2x+
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 7π |
| 6 |
若a>0,当2x+
| π |
| 6 |
| π |
| 2 |
| 5 |
| 2 |
若a<0,当2x+
| π |
| 6 |
| 7π |
| 6 |
练习册系列答案
相关题目