题目内容

【题目】如图,一个摩天轮的半径为8m,每12min旋转一周,最低点离地面为2m,若摩天轮边缘某点P从最低点按逆时针方向开始旋转,则点P离地面的距离h(m)与时间t(min)之间的函数关系是(
A.h=8cost+10
B.h=﹣8cos t+10
C.h=﹣8sin t+10
D.h=﹣8cos t+10

【答案】D
【解析】解:由题意,T=12,

∴ω=

设h(t)=Acos(ωt+φ)+B,(A>0,ω>0,φ∈[0,2π)),

∴A=8,B=10,可得:h(t)=8cos( t+φ)+10,

∵P的初始位置在最低点,t=0时,有:h(t)=2,

即:8cosφ+10=2,解得:φ=2kπ+π,k∈Z,

∴φ=π,

∴h与t的函数关系为:h(t)=8cos( t+π)+10=﹣8cos t+10,(t≥0),

故选:D.

由实际问题设出P与地面高度与时间t的关系,f(t)=Acos(ωt+φ)+B(A>0,ω>0,φ∈[0,2π)),由题意求出三角函数中的参数A,B,及周期T,利用三角函数的周期公式求出ω,通过初始位置求出φ,从而得解.

练习册系列答案
相关题目

【题目】阅读下面材料,尝试类比探究函数y=x2 的图象,写出图象特征,并根据你得到的结论,尝试猜测作出函数对应的图象. 阅读材料:
我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.
在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.我们来看一个应用函数的特征研究对应图象形状的例子.
对于函数y= ,我们可以通过表达式来研究它的图象和性质,如:

(1)在函数y= 中,由x≠0,可以推测出,对应的图象不经过y轴,即图象与y轴不相交;由y≠0,可以推测出,对应的图象不经过x轴,即图象与x轴不相交.
(2)在函数y= 中,当x>0时y>0;当x<0时y<0,可以推测出,对应的图象只能在第一、三象限;
(3)在函数y= 中,若x∈(0,+∞)则y>0,且当x逐渐增大时y逐渐减小,可以推测出,对应的图象越向右越靠近x轴;若x∈(﹣∞,0),则y<0,且当x逐渐减小时y逐渐增大,可以推测出,对应的图象越向左越靠近x轴;
(4)由函数y= 可知f(﹣x)=﹣f(x),即y= 是奇函数,可以推测出,对应的图象关于原点对称. 结合以上性质,逐步才想出函数y= 对应的图象,如图所示,在这样的研究中,我们既用到了从特殊到一般的思想,由用到了分类讨论的思想,既进行了静态(特殊点)的研究,又进行了动态(趋势性)的思考.让我们享受数学研究的过程,传播研究数学的成果.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网