题目内容

20.若方程$\frac{|{x}^{2}-1|}{x-1}$=kx-2有两个不同的实数根,则实数k的取值范围为(  )
A.(-∞,-1)B.(-1,0)C.(0,4)D.(0,1)∪(1,4)

分析 先画出函数y=kx-2,y=$\frac{|{x}^{2}-1|}{x-1}$=图象,利用方程$\frac{|{x}^{2}-1|}{x-1}$=kx-2有两个不同的实数根?函数y=kx-2,y=$\frac{|{x}^{2}-1|}{x-1}$的图象有两个交点,即可求出.

解答 解:y=$\frac{|{x}^{2}-1|}{x-1}$=$\left\{\begin{array}{l}{x+1,x>1或x<-1}\\{-x-1,-1<x<1}\end{array}\right.$,
画出函数y=kx-2,y=$\frac{|{x}^{2}-1|}{x-1}$的图象,
由图象可以看出,y=kx-2图象恒过A(0,-2),B(1,2),AB的斜率为4,
①当0<k<1时,函数y=kx-2,y=$\frac{|{x}^{2}-1|}{x-1}$的图象有两个交点,
即方程$\frac{|{x}^{2}-1|}{x-1}$=kx-2有两个不同的实数根;
②当k=1时,函数y=kx-2,y=$\frac{|{x}^{2}-1|}{x-1}$的图象有1个交点,
即方程$\frac{|{x}^{2}-1|}{x-1}$=kx-2有1个不同的实数根;
③当1<k<4时,函数y=kx-2,y=$\frac{|{x}^{2}-1|}{x-1}$的图象有两个交点,
即方程$\frac{|{x}^{2}-1|}{x-1}$=kx-2有两个不同的实数根.
因此实数k的取值范围是0<k<1或1<k<4.
故选D.

点评 本题考查方程有两个实数解的条件,熟练掌握数形结合的思想方法及把问题等价转化是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网