题目内容
如图,在平面直角坐标系xOy中,已知点A为椭圆
=1的右顶点,点D(1,0),点P、B在椭圆上,
=
.
(1) 求直线BD的方程;
(2) 求直线BD被过P、A、B三点的圆C截得的弦长;
(3) 是否存在分别以PB、PA为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由.
(1) 求直线BD的方程;
(2) 求直线BD被过P、A、B三点的圆C截得的弦长;
(3) 是否存在分别以PB、PA为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由.
(1)x+y-1=0.(2)4
(3)x2+(y-3)2=2,(x-2)2+(y-1)2=2
1) 设P(x0,y0).因为
=
,且D(1,0),A(3,0),点B、P在椭圆上,所以B(-x0,y0),所以x0=1,将其代入椭圆,得y0=2,所以P(1,2),B(-1,2).所以直线BD的方程为x+y-1=0.
(2) 线段BP的垂直平分线方程为x=0,线段AP的垂直平分线方程为y=x-1.解方程组
得圆心C的坐标为(0,-1).所以圆C的半径r=CP=
.因为圆心C(0,-1)到直线BD的距离为d=
=
,所以直线BD被圆C截得的弦长为2
=4
.
(3) 这样的圆M与圆N存在.由题意得,点M一定在y轴上,点N一定在线段PC的垂直平分线y=x-1上.当圆M与圆N是两个相外切的等圆时,一定有P、M、N在一条直线上,且PM=PN.M(0,b),则N(2,4-b).因为点N(2,4-b)在直线y=x-1上,所以4-b=2-1,b=3.所以这两个圆的半径为PM=
,方程分别为x2+(y-3)2=2,(x-2)2+(y-1)2=2
(2) 线段BP的垂直平分线方程为x=0,线段AP的垂直平分线方程为y=x-1.解方程组
(3) 这样的圆M与圆N存在.由题意得,点M一定在y轴上,点N一定在线段PC的垂直平分线y=x-1上.当圆M与圆N是两个相外切的等圆时,一定有P、M、N在一条直线上,且PM=PN.M(0,b),则N(2,4-b).因为点N(2,4-b)在直线y=x-1上,所以4-b=2-1,b=3.所以这两个圆的半径为PM=
练习册系列答案
相关题目