题目内容

8.设x,y满足约束条件$\left\{\begin{array}{l}x+y-1≥0\\ x-y-1≤0\\ x-3y+3≥0\end{array}\right.$,则z=x+3y的最大值为9.

分析 先由约束条件画出可行域,再求出可行域各个角点的坐标,将坐标逐一代入目标函数,验证即得答案.

解答 解:如图即为满足约束条件$\left\{\begin{array}{l}x+y-1≥0\\ x-y-1≤0\\ x-3y+3≥0\end{array}\right.$的可行域,
由图易得:由$\left\{\begin{array}{l}{x-y-1=0}\\{x-3y+3=0}\end{array}\right.$,解得B(3,2),同理可得A(0,1),C(1,0),当x=3,y=2时
z=x+3y的最大值为9,
故答案为:9.

点评 在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网