题目内容
用数学归纳法证明:1+
≤1+
+
…+
≤
+n(n∈N*)
| n |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n |
| 1 |
| 2 |
分析:利用数学归纳法分两步证明即可,①当n=1时,易证不等式成立;②假设n=k(k≥1,k∈N*)时,不等式成立,即1+
≤1+
+
+…+
≤
+k,通过放缩法,去证明当n=k+1时,不等式也成立即可.
| k |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2k |
| 1 |
| 2 |
解答:证明:①当n=1时,1+
≤1+
≤
+1,不等式成立;
②假设n=k(k≥1,k∈N*)时,不等式成立,即1+
≤1+
+
+…+
≤
+k,
则n=k+1时,
1+
+
+…+
+
+
+…+
≥1+
+
+
+…+
>1+
+
=1+
+2k•
=1+
;
又1+
+
+…+
+
+
+…+
<
+k+
=
+k+2k•
=
+(k+1),
即n=k+1时,1+
<1+
+
+…+
+
+
+…+
<
+(k+1),也成立;
综合①②知,对任意的n∈N*,1+
≤1+
+
+…+
≤
+n(n∈N*).
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
②假设n=k(k≥1,k∈N*)时,不等式成立,即1+
| k |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2k |
| 1 |
| 2 |
则n=k+1时,
1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
| 1 |
| 2k+2k |
≥1+
| k |
| 2 |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
| 1 |
| 2k+2k |
>1+
| k |
| 2 |
| ||||||||
| 2k |
=1+
| k |
| 2 |
| 1 |
| 2k+1 |
=1+
| k+1 |
| 2 |
又1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
| 1 |
| 2k+2k |
<
| 1 |
| 2 |
| ||||||||
| 2k |
=
| 1 |
| 2 |
| 1 |
| 2k |
=
| 1 |
| 2 |
即n=k+1时,1+
| k+1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
| 1 |
| 2k+2k |
| 1 |
| 2 |
综合①②知,对任意的n∈N*,1+
| n |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n |
| 1 |
| 2 |
点评:本题考查数学归纳法,着重考查放缩法的应用,考查转化思想与推理论证的能力,属于难题.
练习册系列答案
相关题目