题目内容
已知数列{an)的通项公式为an=
,则该数列的前4项依次为( )
| 1+(-1)n+1 |
| 2 |
| A.1,0,1,0 | B.0,l,0,l | C.
| D.2,0,2,0 |
由通项公式an=
,得
当n=1时,a1=
=1,
当n=2时,a1=
=0,
当n=3时,a1=
=1,
当n=4时,a1=
=0,
即数列{an}的前4项依次为1,0,1,0.
故选A.
| 1+(-1)n+1 |
| 2 |
当n=1时,a1=
| 1+(-1)1+1 |
| 2 |
当n=2时,a1=
| 1+(-1)2+1 |
| 2 |
当n=3时,a1=
| 1+(-1)3+1 |
| 2 |
当n=4时,a1=
| 1+(-1)4+1 |
| 2 |
即数列{an}的前4项依次为1,0,1,0.
故选A.
练习册系列答案
相关题目