题目内容
【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得
,
,
,
.
(Ⅰ)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;
(Ⅱ)判断变量x与y之间是正相关还是负相关;
(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
附:线性回归方程y=bx+a中,
,
,其中
,
为样本平均值,线性回归方程也可写为
.
【答案】解:(Ⅰ)由题意可知n=10,
=
=
=8,
=
=
=2,故lxx=
=720﹣10×82=80,lxy=
=184﹣10×8×2=24,
故可得b=
═
=0.3,a=
=2﹣0.3×8=﹣0.4,
故所求的回归方程为:y=0.3x﹣0.4;
(Ⅱ)由(Ⅰ)可知b=0.3>0,即变量y随x的增加而增加,故x与y之间是正相关;
(Ⅲ)把x=7代入回归方程可预测该家庭的月储蓄为y=0.3×7﹣0.4=1.7(千元)
【解析】(Ⅰ)由题意可知n,
,
,进而可得
,
,代入可得b值,进而可得a值,可得方程;(Ⅱ)由回归方程x的系数b的正负可判;(Ⅲ)把x=7代入回归方程求其函数值即可.
练习册系列答案
相关题目